Motiv 00 e Building Rou

Routes Esti

Ship Dyna

Energy Consumption & Emiss

Case Study

Conclusion o

ShipNetSim: A Multi-Ship Simulator for Evaluating Longitudinal Motion, Energy Consumption, and Carbon Footprint of Ship

By: Ahmed Aredah, Hesham Rakha

Charles E., Via, Jr. Department of Civil and Environmental Engineering

AhmedAredah@vt.edu, HRakha@vt.edu

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

1/19

EL OQO

Table of Contents

- Motivation & Scope
- **Building Routes** 2
- **Estimate Forces**
- Ship Dynamics 4
- **Energy Consumption & Emissions** 5
- Case Study 6
- Conclusion

Ship Dynami

Energy Consumption & Emissions

Case Study

Conclusion

Motivation

- No integrated cargo ships simulator capable of
 - simulating multiple ships,
 - in a global setting, and
 - 8 mainly for energy consumption.

- Broader Goal:
 - integrate within a larger scale simulator for agent-based container-level analysis and optimization.
 - Trains Simulator (NeTrainSim),
 - Ships Simulator (ShipNetSim),
 - Trucks/Traffic Simulator (Integration).

トイヨトイヨ

ELE NOR

Scope

- Open-source simulator,
- Integrated simulator instead of sparse simulation efforts in the industry,
- Energy Consumption (EC) prediction tool,
- Fast but with high fidelity results.

outes Estin

es Ship Dyr

Energy Consumption & Emissio

Case Study

Conclusion

Find routes by Traverse Points

- Build visibility graph (too many points & Earth Model),
- Use Quadtree for optimized map query performance, and
- Optimize trip travelled distance (could be altered).

Figure: Visibility Graph Sample

Figure: Edges Buffering

Ahmed Aredah, Hesham Rakha

ShipNetSim

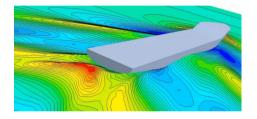
outes Estimate Forces

es Ship Dy

Energy Consumption & Emi

Case Study

Conclusion


Estimate Resistance

O Capture Full Scale Open-Seas Resistance

1 Calm Water Resistance:

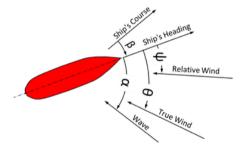
- Frictional Resistance (*R_F*),
- Wave-Making Resistance (*R_W*),
- Bulbus Bow Resistance (*R_B*),
- Transom Resistance (*R_{TR}*), and
- Wind Resistance (*R_{AA}*) *,
- Model Correction (*R_A*).
- Open Seas Resistance:
 - Wave Resistance, and
 - Wind Resistance *.

 $R_{t|n}(t) = R_{CALM}(t) + R_{AW}(\omega(t), u(t), \beta(t)) + R_{AA}(\psi(t), V_{WR}(t))$

 $\omega(t)$: Wave frequency, $\beta(t)$: Wave heading, u(t): Wave speed.

 $\psi(t)$: Wind heading, V_{WR} : Wind speed.

Estimate Forces


rces Ship

Energy Consumption & Emis

Case Study

Conclusion

Estimate Resistance

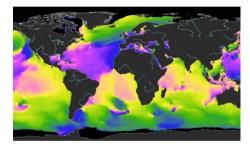


Figure: Wind and waves directions relative to ship's Figure: Attributes data as GIS TFF/SHP heading files

Estimate Forces

Ship Dynamic

Energy Consumption & Emissions

Case Study

Conclusion

Estimate Propulsion Forces

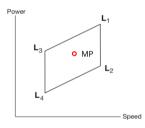


Figure: Engine Load Points



Figure: Engine Operational Limits

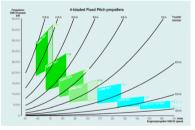
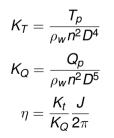


Figure: Engine Operational Limits

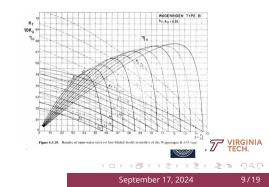
Estimate Forces

Ship Dynamics

Energy Consumption & Emissions


Case Study

Conclusion


Estimate Propulsion Forces

2 Capture the Propeller Properties

- Propellers' Efficiency vs. Speed of Advance,
- Engine Efficiency vs. RPM.

Figure: B-Series Propeller Thrust and Torque Coefficients and efficiency

Ahmed Aredah, Hesham Rakha

ShipNetSim

Motivation & Sco

Building Routes

utes Estim

rces Ship Dynamics

Energy Consumption & Emissions

Case Study

Conclusion o

Ship Dynamics

Figure: Ships' turning Circle

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

Ship Dynamics

Similar to the following model adopted in the train dynamics, albeit some changes:

· (+) 0

Ship Dynamics

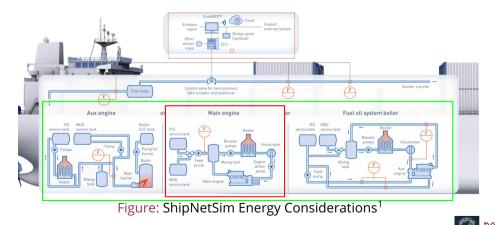
• Spacing:
$$s_{lad} = s_{j_{n-1}} + x_{des}$$
, $x_{des} = \int_{v(t)}^{v(t)=0} (v(t) - d_{max} \cdot \Delta t) \cdot dt$

Weight: $m_{total} = m_{dead weight} + m_{surge added weight}$

Stopping Distance

For ships, it is harder to predict in comparison to trains.

d_{max}: deceleration from resistance and reverse propeller (if applicable).


• • = • • = •

11/19

EL OOG

Energy Consumption & Emissions 0000

Energy Consumption Delimitation

¹Krohne n.d.

Ahmed Aredah, Hesham Rakha

ShipNetSim

・ロト ・ 日 ・ ・ ヨ ・ September 17, 2024

4.35

三日 のへで 12/19

RGINIA

Building Rou

toutes Esti

ces Ship Dy

Energy Consumption & Emissions

Case Study

Conclusion

Emissions Limits

An Emission Control Area (ECA) enforces controls to minimize airborne emissions from ships Controlled emissions are SO, and PM (SECAs) and NO_x (NECAs)

Figure: Emission Control Area (ECAs)²

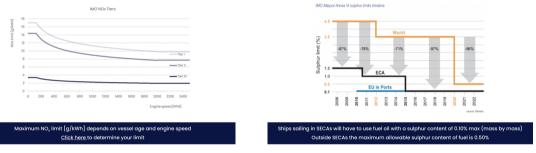
²sustainable ships n.d.

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

ites Estima


es Ship Dy

Energy Consumption & Emissions

Case Study

Conclusion o

Estimating Emissions

Figure: Tier I, II, and III NOX restrictions^a

^{*a*}sustainable ships n.d.

-

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

4.3

・ ロ ト ・ 母 ト ・ ヨ ト

Figure: Sulfur emissions world reduction goal^a

Motivation & Scop

Building Routes

outes Esti

es Ship Dy

Energy Consumption & Emissions

Case Study

Conclusion o

ShipNetSim GUI

Ahmed Aredah,

Simulation time:	0.00	Export options Output directory:	Øroxse	
Simulation time step: Draw output every:		Summary file name: Export trajectory?	Show detailed vessels surmary? Injectory file neme:	
	Sector (Sector)	Constanting of the second s	ໂດຍສະດັບເວັດຊີ (ມີເວັດາ) ໂດຍສະດັບເວັດຊີ ເພື່ອເປັນ ໂດຍ ໂດຍສະດັບເວັດຊີ ເພື່ອເປັນ ເປັນ ເວັດ ເອາະເຊັ່ງແຕ່ ເວັດເອນ ແຫຼ່ງ ເວັດເອນາງ ເອລະ ແມ່ງ ເວັດເອນາງ ເອລະ ແມ່ງ ເວັດເອນາງ ເອລະ ແມ່ງ ເວັດເອນາງ ເອລະ ແມ່ງ ເວັດເອນາງ ເອລະ ແມ່ງ ເວັດເອນາງ	(INMAC) See Luight BLL2)
			gure: ShipNetSim GUI	

15/19

VIRGINIA TECH.

(目) 三日 のへの

Routes Est

rces Ship

Energy Consumption & E

Case Study

Conclusion

Case Study

Table: Ship Characteristics used in the case study

Ship Characteristic	Value
Route	Savannah, U.S. to Algeciras, Spain
Length between perpendiculars (m)	175
Beam (m)	25.4
Average Draft (m)	9.5
Max Speed (knot)	20
Displacement (<i>m</i> ³)	24053
Block Coef	0.561
Prismatic coefficient	0.589
Position of LCG (m)	86.5
Fuel Type	HFO
Engine	6560ME
Engine MCR @ L1 (kWh)	14940
Engine RPM @ L1	105
Engine Eff at L1	0.5018
Propeller Diam (m)	6.5
Propeller Pitch (m)	9.88
Propeller Blade Count	5
Propeller Expanded Area Ratio	0.8
Weight (ton)	24610.0

Fuel Types

- MGO Marine Gas Oil Emissions: Low SOx, PM.
- MDO Marine Diesel Oil Emissions: Moderate SOx, PM.
- IFO Intermediate Fuel Oil Emissions: High SOx, PM.
- MFO Marine Fuel Oil Emissions: High SOx, PM.
- HFO Heavy Fuel Oil Emissions: Very high SOx, PM.

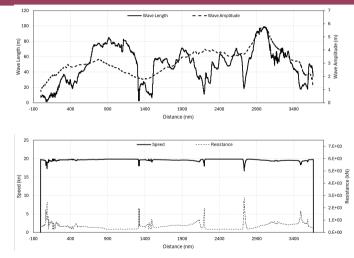
Ahmed Aredah, Hesham Rakha

ShipNetSim

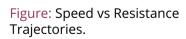
Motivation & Scop

Building Route

outes Est


orces Ship

Energy Consumption & Em


Case Study

Conclusion

Results

Figure: Wave Details.

< - > < -

Э

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

- Simulation Time: 6 min,
- Trip Duration: 7 Days,
- EC: 474 tons of HFO,
- **Emissions**: 1,495.305 tons of CO₂.

This result shows a 13% difference compared to the findings of Huotari et al. 2021, which reported a fuel consumption of 550 tons.

s Ship Dyna

Energy Consumption & Emissions

Case Study

Conclusion

Conclusion

ShipNetSim is the first **Cargo/Bulk/Container Ship** simulator that:

- Integrates all aspects of ships analysis for energy consumption analysis,
- Applies location policy and geometrical restrictions on ships,
- Generates high fidelity forces estimations with low computational power.

Questions?

Ahmed Aredah, Hesham Rakha

ShipNetSim

September 17, 2024

- Huotari, Janne et al. (2021). "Convex optimisation model for ship speed profile: Optimisation under fixed schedule". In: *Journal of Marine Science and Engineering* 9.7, p. 730.
- Krohne (n.d.). Fuel consumption and bunker monitoring onboard a container ship Container ships KROHNE USA. URL:
 - https://us.krohne.com/en/industries/marine-industry/containerships/fuel-consumption-bunker-monitoring-container-ship (visited on 03/26/2024).

sustainable ships (n.d.). ECA (Emission Control Area). URL: https://www.sustainable-ships.org/rules-regulations/eca (visited on 07/23/2024).

